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ABSTRACT

This study demonstrates an implementation of the prototype quantitative precipitation R estimation al-

gorithm using specific attenuation A for S-band polarimetric radar. The performance of R(A) algorithm is

assessed, compared to the conventional algorithm using radar reflectivity Z, at multiple temporal scales.

Because the factor a, defined as the net ratio of A to specific differential phase, is a key parameter of the

algorithm characterized by drop size distributions (e.g., differential reflectivity Zdr dependence on Z), the

estimation equations of a and a proper number of Zdr–Z samples required for a reliable a estimation are

examined. Based on the dynamic estimation of a, the event-based evaluation using hourly rain gauge ob-

servations reveals that the performance of R(A) is superior to that of R(Z), with better agreement and lower

variability. Despite its superiority, the study finds that R(A) leads to quite consistent overestimations of

about 10%–30%. It is demonstrated that the application of uniform a over the entire radar domain yields

the observed uncertainty because of the heterogeneity of precipitation in the domain. A climatological

range-dependent feature of R(A) and R(Z) is inspected in the multiyear evaluation at yearly scale using

rain totals for April–October. While R(Z) exposes a systematic shift and overestimation, each of which

arise from the radar miscalibration and bright band effects,R(A) combining with multiple R(Z) values for

solid/mixed precipitation shows relatively robust performance without those effects. The immunity of

R(A) to partial beam blockage (PBB) based on both qualitative and quantitative analyses is also verified.

However, the capability of R(A) regarding PBB is limited by the presence of the melting layer and its

application requirement for the total span of differential phase (e.g., 38), which is another challenge for

light rain.

1. Introduction

Quantitative precipitation estimation (QPE) using

weather radar has become common and important for

many meteorological and hydrological applications

such as severe weather warnings and flood forecasting

and management (e.g., Zhang et al. 2016; Krajewski

et al. 2017). Since its initial deployment in the early

1990s, the QPE algorithm for the U.S. Weather

Surveillance Radar-1988 Doppler (WSR-88D) net-

work has evolved according to its hardware and po-

larimetric upgrades (e.g., Fulton et al. 1998; Istok

et al. 2009; Wang et al. 2019). Numerous studies that

utilized the dual-polarization (DP) capability have

tested a variety of QPE algorithms based on different

DP variables and demonstrated the improved accu-

racy of polarimetric estimates in different conditions

and cases (e.g., Ryzhkov et al. 2005a; Wang and

Chandrasekar 2010; Cifelli et al. 2011). However,

there is still no assurance that such polarimetric es-

timation methods are consistently superior to the one

based on the conventional reflectivity–rain rate re-

lation (see, e.g., Seo et al. 2018).

Attenuation of a radar beam’s power along a propa-

gation path is commonly considered a shortcoming for

shorter wavelength radars (e.g., X band), necessitating a

correction in rainfall estimation algorithms (e.g., Park

et al. 2005; Gorgucci and Chandrasekar 2005).While the

attenuation effect at longer wavelengths has been as-

sumed to be negligible, Ryzhkov et al. (2014) demon-

strated that rainfall estimation using specific attenuation

at S band is less sensitive than that using other radarCorresponding author: Bong-Chul Seo, bongchul-seo@uiowa.edu
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observables to the variability of drop size distributions

(DSDs). Specific attenuationA, unlike radar reflectivity

Z, is also immune to radar miscalibration and partial

beam blockage (PBB). Because of these benefits, sev-

eral recent studies (e.g., Cocks et al. 2019; Wang et al.

2019; Wolff et al. 2019; Zhang et al. 2020) have docu-

mented development and evaluation of the A-based

QPE techniques, R(A), for S-band radar.

The Iowa Flood Center (IFC) generates statewide

streamflow predictions based on a distributed hydro-

logic model known as the Hillslope Link Model, driven

by a real-time radar-based precipitation product (see

Krajewski et al. 2017). This product is a composite of

seven WSR-88D radars covering Iowa and has time and

space resolutions of five minutes and approximately

0.5 km, respectively. The product is not adjusted with

rain gauge observations. Major QPE challenges that

affect IFC’s streamflow prediction include 1) relative

biases among different radars that occasionally lead

to a noticeable discontinuity at the overlapping areas

in the composite product (e.g., Seo et al. 2013) and

2) inconsistent rainfall estimation and its seasonal ef-

fect in a region covered by one of the radars arising

from PBB at that location (e.g., Keem et al. 2019). To

address these challenges, we have adapted and tested

the S-band prototype R(A) algorithm documented in

Ryzhkov et al. (2014) and Wang et al. (2019). In this

paper, we describe the implementation of R(A) within

our current real-timeQPE framework based onR(Z) and

comparatively assess the performance of the adapted

R(A) and current R(Z) algorithms.

In section 2, we provide information on the spatial

domain and data for WSR-88D radars, temperature

sounding retrieved from the numerical weather pre-

diction model analysis, and ground reference data

used in this study. Section 3 describes our R(A) im-

plementation and adaptation, as well as the strategies

for its performance evaluation at multiple temporal

scales. In section 4, we present the evaluation results

on the accuracy improvements of R(A) and the un-

certainty metrics of the algorithm. In section 5, we

summarize our main findings, discuss remaining chal-

lenges, and present ideas on how to further improve

the performance of R(A).

2. Study domain and data

We apply the R(A) algorithm to the data collected

from the WSR-88D radars covering the Iowa domain

where the IFC performs extensive flood-related re-

search activities including operational weather moni-

toring and streamflow forecasting (see Krajewski et al.

2017). As illustrated in Fig. 1, we selected three radars

located in Des Moines, Iowa (KDMX); Sioux Falls,

South Dakota (KFSD); and La Crosse, Wisconsin

(KARX) and processed their observations for the

domain within 200km to produce hourly rainfall esti-

mates. The U.S. National Weather Service (NWS) com-

pleted the DP upgrade of theWSR-88D network in 2014,

and the DP variables for the three radars shown in Fig. 1

are available from 2013.

a. WSR-88D data

We collected radar Level II volume data (e.g.,

Kelleher et al. 2007) from Amazon’s big data archive

(Ansari et al. 2018) using a data acquisition tool im-

plemented in a system that provides a radar QPE

product for a customized space–time domain (Seo

et al. 2019). We acquired the KARX data for 1 May–

15 June 2013 because of the presence of reliable

hourly rain gauge data within the Turkey River basin

(see Fig. 1) during this period, which allows us to

scrutinize the performance of R(A). The data collection

from the KDMX and KFSD radars covers the months of

April–October for 2015–17. In this 3-yr period, we ex-

cluded cold months because the R(A) method is valid

only for liquid precipitation, and the low-altitude freezing

level often present in cold months significantly limits the

application range of R(A).

The Level II data contain three DP variables: differ-

ential reflectivityZdr, copolar correlation coefficient rhv,

and differential phase fdp. Because unprocessed fdp in

Level II data is noisy and is wrapped to values ranging

from 08 to 3608, a procedure to unwrap and smooth these

FIG. 1. The locations of three WSR-88D radars and rain gauges

consisting of the COOP and the IFC networks. The circular areas

centered on the radar sites (gray dots) indicate the 200-km domain

of individual radars. The white solid line represents the boundary

of the Turkey River basin in Iowa.
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observations is required (e.g., Wang and Chandrasekar

2009). We unwrapped the phase data to values rang-

ing from 08 to 10808 (3608 3 3) and then applied

smoothing filters. We used the unwrapping (unfolding)

and smoothing routines described in the WSR-88D

Common Operations and Development Environment

(CODE) public package (https://www.weather.gov/code88d/

). These routines are commonly used to derive specific dif-

ferential phase Kdp from fdp. We also applied an aver-

aging filter along a radial direction for Z and other DP

fields with a specific size of averaging window repre-

sented by the number of gates.

b. Temperature sounding data

To define a maximum range to which R(A) is ap-

plicable, we retrieved the vertical temperature pro-

files from the Rapid Refresh (RAP) model analysis

(Benjamin et al. 2016). The RAP is a continental-

scale, hourly-updated assimilation and model forecast

system based on a 13-km resolution horizontal grid.

We created a lookup table that defines a corre-

sponding horizontal RAP grid to each radar polar

pixel (0.58 by 250m) to construct three-dimensional

temperature information within a radar domain. We

then determined the melting layer (ML) altitude and

valid ranges for the R(A) application (e.g., below the

ML) by checking if the temperature at the top of a

radar beam at a given location represented by radar

range, azimuth, and elevation angle is greater than

58C. We applied this procedure to all elevation angles

in the Level II data, which enabled us to combine the

R(A) estimates from multiple elevation angles.

c. Rain gauge data

We collected rain gauge observations from two dif-

ferent ground networks to evaluate theR(A) estimates

from the three radars shown in Fig. 1. The IFC has

operated a dense network consisting of 20 double

tipping-bucket rain gauges within the Turkey River

basin in Iowa (see Fig. 1). This network was deployed

as part of the NASA field campaign known as Iowa

Flood Studies (e.g., Seo et al. 2018) for the period of

1–15 June 2013. Because the IFC staff and students

regularly visited and maintained the gauges during the

campaign period to assure the quality of the collected

data, we used their hourly observations to assess de-

tailed aspects of R(A) performance. The data quality

control procedure of these gauges is documented in

Seo et al. (2015a).

For a spatially extensive evaluation of the capa-

bility of R(A) (e.g., for radar miscalibration and PBB

effects), we also acquired the NWS Cooperative

Observer Program (COOP; Mosbacher et al. 1989)

rain gauge data for 2015–17. These gauges are well dis-

tributed over the study domain as shown in Fig. 1, and

there are about 100 gauges within each individual do-

main of the KDMX and KFSD radars. Because of the

well-known issue with these daily gauge totals [see, e.g.,

Seo et al. (2013) for the report timing error], we accu-

mulated the collected data over time for analyses at

longer time scales (e.g., monthly and yearly).

3. Methodology

In this section, we briefly describe estimation proce-

dures associated with the R(A) approach and provide

relevant formulas to derive the central elements and

parameters of the approach. OurR(A) implementation

is based on the S-band prototype algorithm docu-

mented in Ryzhkov et al. (2014) andWang et al. (2019),

and we discuss the practical adaptation of the proto-

type algorithm within our existing QPE framework

(e.g., Krajewski et al. 2017). This section also outlines

testing and evaluation strategies for the estimation of a

key parameter in the R(A) procedures and for the

performance of R(A) compared to that of the Z-based

conventional estimation.

a. Specific attenuation estimation

The estimation procedures of specific attenuation A

proposed by Ryzhkov et al. (2014) used measured (i.e.,

attenuated) reflectivity Za and path-integrated attenu-

ation (PIA) derived from the total differential phase

between ranges r1 and r2 along the propagation path

(e.g., Testud et al. 2000). The calculation steps of A are

formulated in Eqs. (1)–(5):

A(r)5
[Z

a
(r)]bC(b, PIA)

I(r
1
, r

2
)1C(b, PIA)I(r, r

2
)
, (1)

where

I(r
1
, r

2
)5 0:46b

ðr2
r1

[Z
a
(s)]b ds , (2)

I(r, r
2
)5 0:46b

ðr2
r

[Z
a
(s)]b ds , (3)

C(b, PIA)5 exp(0:23bPIA)2 1, and (4)

PIA(r
1
, r

2
)5a[f

dp
(r

2
)2f

dp
(r

1
)] . (5)

The value of constant b varies from 0.6 to 0.9 at micro-

wave frequencies, and we use 0.62 as a typical value for

S-band radar (Ryzhkov et al. 2014). The factor a equal

to the net ratio of A to Kdp in Eq. (5) is the key pa-

rameter in estimating A and is generally changing with
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temperature and DSD variability. To estimate a, we

use the ‘‘Zdr slope (Zdr dependence on Z)’’ method,

which requires a large number of Zdr–Z samples (e.g.,

30 000 in Wang et al. 2019) to derive a robust relation

between Zdr and Z. In this study, we test three

a estimation equations presented in Eqs. (6)–(8), all

of which rely on theZdr slopeK and select the best one

in terms of QPE accuracy for the remaining analyses.

Equations (6) and (8) indicate a nonlinear depen-

dence of a on K, and a bilinear form presented in

Eq. (7) is an approximation of the nonlinear function

in Eq. (6) (Wang et al. 2019). Equation (8) allows a

dynamic change of the a–K relation and was sug-

gested by Ryzhkov and Zrnić (2019). Both Eqs. (6)

and (8) were obtained from simulations at S band

using DSDs observed in Oklahoma:

a5 0:0542 1:31K1 10:9K2 , (6)

a5

�
0:0492 0:75K , if K, 0:045

0:015, if K. 0:045
, and (7)

a5 a
1
2 a

2
K1 a

3
K2 , (8)

where

a
1
5 0:05302 0:0188Z

m
1 0:000194Z2

m ,

a
2
5 25:02 0:983Z

m
1 0:0103Z2

m, and

a
3
5 3032 12:5Z

m
1 0:133Z2

m .

In Eq. (8), Zm denotes a maximum reflectivity value

(expressed in dBZ) obtained from Zdr–Z samples used

for the Zdr slope estimation. We collect Zdr–Z samples

from the data at the base scan elevation (e.g., approx-

imately 0.58) within a 20–120-km range to exclude

samples affected by radar beam broadening and over-

shooting, as well as significant ground clutter (e.g.,

Morin and Gabella 2007; Hubbert et al. 2009). We then

take samples only when a sample’s rhv is greater than

0.98 and calculate median Zdr values for the selected

samples with a 2-dB reflectivity interval, ranging from

20 to 50 dBZ. For a reliable and dynamic a estimation

(e.g., Cocks et al. 2019), we expand the sampling period

to several earlier volume observations (i.e., up to

30min) if the number of Zdr–Z samples collected

from a single volume does not meet our sample size

requirement (i.e., 3000). In case we do not have a suf-

ficient number of samples, or estimated a is not within a

range of 0.01–0.04 (see Wang et al. 2019), we use a

default a value (0.015 dB per degree). Because we limit

the sampling range, it is often difficult to obtain the

recommended number of Zdr–Z samples (i.e., 30 000)

for the a estimation. To justify the use of a smaller

number ofZdr–Z samples in this study, we performed a

simple sensitivity analysis with a variety of sample

sizes and examined the effect of a estimated from

different sample sizes on the rainfall estimation accu-

racy. This analysis provides some insight into a future

development for a multiple a estimation by splitting

collected samples into different rainfall regimes (e.g.,

DSDs) while the current approach applies a uniform

a value over the entire radar domain at a given

observation time.

b. Precipitation estimation

Once we quantify specific attenuationA along a radial

direction using Eq. (1) and define the melting layer

range based on the retrieved temperature sounding

from the RAP analysis, we apply Eq. (9) to estimate the

amounts of liquid precipitation (e.g., pure rain) for the

regions below theML.We note that Eq. (9) is applicable

only if the total span offdp over a rain segment is greater

than a predefined threshold (e.g., 38 in this study) be-

cause of the inherent noisiness offdp. Otherwise, we use

R(Z) presented in Eq. (10). If precipitation is classified

as hail based on a reflectivity threshold (e.g., 53 dBZ),

Kdp-based estimation provided in Eq. (11) is more ap-

propriate. For solid and mixed (solid/liquid) precipita-

tion within and above the ML, Eq. (10) is selectively

applied depending on the classified hydrometeor types

(see, e.g., Istok et al. 2009). Our hydrometeor classifi-

cation scheme employs polarimetric signatures of ice

and dry/wet snow illustrated in Straka et al. (2000) and

Ryzhkov et al. (2005b) in conjunction with the ML

information. Because the solid and mixed precipita-

tion estimation and its quantitative evaluation are still

challenging, we attempted to minimize the effect of

those precipitation estimates on our R(A) perfor-

mance evaluation. The evaluation strategy is provided

in the next subsection. Our estimators of rainfall rate

are as follows:

R(A)5 4120A1:03, (9)

R(Z)5 0:017Z0:714. (10)

For locations classified as wet snow these estimates are

reduced to 60%, for dry snow within the ML they

remained unchanged, for dry snow above the top of the

ML they are multiplied by 2.8, the same as for ice

crystals:

R(K
dp
)5 29:0K0:77

dp . (11)

After applying Eqs. (9)–(11) to the observed data and

generating rain rate maps at the several lowest elevation
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angles, we combine these rain rate estimates using a

linear weighting scheme. A nonparametric kernel

function (e.g., lognormal) assigns a greater weight to

the elevation angle data closer to a predefined con-

stant altitude (e.g., 1.5 km). This hybrid scan approach

tends to mitigate significant ground clutter effects at

the ranges close to the radar site (e.g., Fulton et al. 1998;

Seo et al. 2011). We eliminated the nonmeteorological

radar echoes (e.g., ground clutter, anomalous propa-

gation, and wind farm effects) using a combination of

data quality control methods described in Seo et al.

(2015b, 2020).

c. Performance evaluation

We evaluate the R(A) performance in two different

ways using different datasets: 1) the KARX radar and

hourly rain gauge data collected over the Turkey River

basin and 2) the KDMX and KFSD radar data and daily

reports from the COOP rain gauges extensively dis-

tributed over the Iowa domain. The first evaluation aims

to determine an effective a estimationmethod by testing

Eqs. (6)–(8) and a suitable Zdr–Z sample size for theZdr

slope calculation that can lead to robust a and following

rainfall estimation. To minimize the effect of solid and

mixed precipitation, we included liquid precipitation

estimates only in the evaluation using the retrieved ML

information. In other words, we excluded hourly radar–

gauge (RG) pairs from the analysis if radar estimates at

any time stamps within an hourly span are contaminated

by the ML. This hourly assessment also inspects the de-

tailed performance of R(A) with respect to many different

rainfall events during the 6-week period, which reveals

event-dependent performances. For some event cases that

show relatively weak performance (over- or underestima-

tion), we examine a probable uncertainty factor associated

with the Zdr–Z relation and compare the relation with the

one corresponding to the cases with good performance.

The second evaluation, using multiple-year data

based on the sample size and the a estimation equation

selected from the first evaluation, provides compre-

hensive analyses to demonstrate the improvements and

practical challenges of R(A). Unlike the first evaluation,

these analyses include estimates from solid and mixed

precipitation. As such, there should be clear effects

of those precipitation estimates on the performance of

our R(A) algorithm selectively combined with R(Z) in

Eq. (10). Because these effects can be revealed well in

climatological tendency at different ranges, we compare

the range-dependent feature from our R(A) algorithm

with that of conventionalR(Z) which typically exposes a

climatological pattern associated with the ML (e.g.,

Krajewski et al. 2011). We also assess the well-known

improvements achievable by R(A) concerning the radar

miscalibration and PBB effects and discuss the practical

limitation for this improvement.

To quantitatively measure the performance of R(A),

we use the multiplicative bias (B) represented by the

ratio of radar estimates to gauge observations, correla-

tion coefficient (r), mean absolute error (MAE), and

root-mean-square error (RMSE). The bias value greater

or smaller than unity (1.0) indicates an overestimation

or underestimation of radar estimates, respectively. For

better representation and understanding of the results,

we normalize the MAE and RMSE values (e.g., NMAE

and NRMSE) by the mean of rain gauge observations

and provide them as percentages in some cases. The

detailed formulas of performance metrics are provided

in Eqs. (12)–(15):

B5

�
n,t

i51,j51

R
i,j

�
n,t

i51,j51

G
i,j

, (12)

r5

�
n,t

i51,j51

(R
i,j
2R)(G

i,j
2G)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n,t

i51,j51

(R
i,j
2R)2 �

n,t

i51,j51

(G
i,j
2G)2

s , (13)

MAE5
1

nt
�
n,t

i51,j51
jR

i,j
2G

i,j
j, and (14)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nt
�
n,t

i51,j51
(R

i,j
2G

i,j
)2

s
, (15)

where Ri,j and Gi,j indicate the jth hour radar estimate

and gauge observation at the ith gauge location, re-

spectively. The variables n and t denote the number of

rain gauges and total hours in the evaluation period. The

terms R and G are the radar and gauge mean values.

4. Results

In this section, we use hourly radar estimates and

gauge observations to test and find the optimal

a estimation equation and Zdr–Z sample size for robust

a estimation using the data from the KARX radar and

the IFC rain gauges shown in Fig. 1. Using these deci-

sions regarding the a estimation, we then evaluate the

performance of R(A) estimates generated at multiple

temporal scales. For a shorter-scale evaluation, we use

the same hourly data as used in the determination pro-

cedure for a estimation. On the other hand, a longer-

scale analysis evaluates the overall and range-dependent

aspects of R(A) performance using the multiple-year
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data collected from the KDMX and KFSD radars and

daily COOP rain gauges.

a. Determination for a estimation

Figure 2 shows the RG comparison results regarding

R(Z) and three R(A) estimates using the different a

equations provided in Eqs. (6)–(8). The dots in Fig. 2

indicate hourly RG pairs for the 20 rain gauge locations

together, and Fig. 2 does not include the pairs affected

by the ML during the period of 1 May–15 June 2013. In

Fig. 2, the R(Z) estimates show highly scattered distri-

bution while the R(A) estimates demonstrate significant

improvements in terms of scatter and agreement with

gauge observations. Of the three a estimation equa-

tions, the result using Eq. (6) seems slightly better

than the one using Eq. (7) based on the statistical

metrics, and the Eq. (8) based estimation yielded

considerable systematic overestimations. The ob-

served tendency of about 25% overestimation of the

two R(A) estimates using Eqs. (6) and (7) tends to

depend on the representativeness of estimated awith

respect to precipitation systems that passed over the

rain gauge locations. We will discuss this overesti-

mation issue further in this section employing two

example events.

Based on the results shown in Fig. 2, we decided to

use Eq. (6) in estimating a for the rest of the analyses

in this study. To test the effect of the Zdr–Z sample

size on the a estimation and following QPE accuracy,

we performed a simple sensitivity analysis using a

variety of sample sizes. The sensitivity analysis aims to

reveal how the accuracy of R(A) estimates changes

with respect to a derived from the collected Zdr–Z

samples that meet the requirement for the minimum

number of samples ranging from 3000 to 50 000. If the

number of samples did not meet this requirement at a

certain (radar volume) observation time, we excluded

the corresponding hour from the RG analysis. In the

sensitivity analysis, the RG analysis hours decrease

(see Table 1) as the minimum number of samples in-

creases (e.g., the requirement becomes stricter). This

is because of the increasing hours containing a smaller

number of Zdr–Z pairs than the required sample size,

which are excluded from the metrics calculation. The

analysis results are presented in Table 1, and Fig. 3

illustrates the change of calculated statistical metrics

and RG analysis hours for different Zdr–Z sample

sizes. In Fig. 3, the change of bias and correlation does

not seem to be sensitive to the number of Zdr–Z

samples, at least for the tested sample sizes in Table 1.

Therefore, we determined the required number of

Zdr–Z samples in our algorithm implementation to be

the smallest sample size used in Table 1 (i.e., 3000). We

note that MAE/RMSE and their normalized values in

Table 1 behave oppositely with respect to the sample

size, and this is because of the increasing gauge mean as

the required sample size becomes greater.

b. Shorter-scale evaluation

Over the Iowa domain shown in Fig. 1, the selected

period from 1 May through 15 June 2013 was fairly wet,

containing many different rain events characterized by

convective/stratiform or heavy/light rain. By inspecting

rain gauge records and radar maps acquired from the

field experiment (e.g., Seo et al. 2018), we selected

12 rain events that were not affected by the low-level

ML and snow cases. Table 2 lists their individual pe-

riods, maximum rainfall intensity, and RG evaluation

metrics for R(A) and R(Z). The performance metrics

associatedwith themaximum intensity indicate that there

is still a challenge for both R(A) and R(Z) in relatively

light rain cases (e.g., maximum intensity, 10.0mmh21).

FIG. 2. Hourly RG comparison results for R(Z) and three R(A) estimates using the data from the KARX radar and rain gauges within

the Turkey River basin in Iowa. The threeR(A) estimates were generated using different a estimation equations provided in Eqs. (6)–(8).

The statistical metrics provided in the figure are the multiplicative bias B, correlation coefficient r, MAE, and RMSE. The number of

nonzero RG pairs in the comparisons is about 1030 for the period of 1 May–15 June 2013.
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Because our R(A) implementation applies R(Z) to the

rain segments where the total fdp change along a radial

direction is not sufficient (,38), the performance of R(A)

does not seem to be better than that of R(Z) for the light

rain cases in Table 2. Figure 2 demonstrates the overall

improvements of R(A) during the entire 6-week period,

and the performance metrics for most intense rain cases

in Table 2 confirm the superiority of R(A) to R(Z).

We chose four intense rain events from Table 2 as

representative cases and illustrate their scatterplots

in Fig. 4 to scrutinize the detailed aspects of case-

dependent R(A) performance. As shown in Fig. 4, the

agreement between the hourly RG pairs seems much

better for R(A) than for R(Z), and the statistical metrics

(e.g., r, MAE, and RMSE) from all four cases verify that

R(A) significantly outperforms our current R(Z) QPE

except for the overestimation tendency observed, par-

ticularly from event 3. To investigate this overestimation

tendency, we present the temporal variation of esti-

mated a and bias, two instantaneous base reflectivity

maps within the hours of interest (e.g., based on bias),

and the estimatedZdr slope and a at the two instances in

Fig. 5. As shown in Fig. 5, the bias change implies con-

sistent overestimations over the entire event, and we

selected two times indicated by the red and blue dots

that recorded the highest and lowest biases. The re-

flectivity maps in Fig. 5 show the Zdr–Z sampling range

represented by the black circle and the spatial pattern of

precipitation within the Turkey River basin boundaries

(white solid line) where the rain gauges are located.

From these reflectivity maps, we can observe the dif-

ferences of precipitation patterns between the sampling

range and the basin area, which primarily cause the es-

timation uncertainty of a. Because we assume that an

estimated a value from the sampling range is homoge-

nous, the heterogeneity of precipitation systems within

a radar domain often leads to under- or overestima-

tion depending on the situation (Wang et al. 2019;

Cocks et al. 2019). In the reflectivity map at 1413 UTC,

TABLE 1. Sensitivity analysis results ofR(A) estimates with respect to the number ofZdr–Z samples. The sensitivity was analyzed based

on the hourly RG evaluation. The statistical metrics provided in the table are themultiplicative biasB, correlation coefficient r, MAE, and

RMSE. NMAE and NRMSE indicate normalized percentage (%) using the gauge mean value. The definitions of these metrics are

presented at the end of section 3.

Minimum No. of

Z–Zdr pairs

No. of RG

hours (h) B r MAE (mm) RMSE (mm) NMAE (%) NRMSE (%)

Gauge

mean (mmh21)

3000 326 1.25 0.95 0.50 1.45 41.3 119.0 1.22

4000 303 1.25 0.95 0.55 1.51 41.3 114.0 1.33

5000 285 1.25 0.95 0.59 1.57 41.3 109.9 1.43

6000 278 1.25 0.95 0.61 1.60 41.2 107.9 1.48

7000 274 1.25 0.95 0.62 1.61 41.1 107.0 1.50

8000 267 1.25 0.95 0.63 1.63 41.0 105.8 1.54

9000 254 1.25 0.95 0.67 1.68 40.8 102.8 1.63

10 000 246 1.24 0.95 0.69 1.71 40.8 100.8 1.69

12 000 234 1.26 0.95 0.71 1.74 41.3 101.3 1.72

14 000 218 1.25 0.95 0.73 1.77 41.1 100.3 1.77

16 000 202 1.25 0.95 0.74 1.80 40.6 99.1 1.82

18 000 190 1.23 0.95 0.73 1.74 39.4 93.9 1.85

20 000 183 1.23 0.95 0.75 1.77 39.2 92.0 1.92

24 000 167 1.24 0.94 0.80 1.83 40.0 91.5 2.00

28 000 154 1.23 0.94 0.81 1.85 39.0 89.1 2.08

32 000 141 1.23 0.94 0.85 1.93 38.1 86.3 2.24

36 000 131 1.22 0.94 0.88 1.99 37.4 84.4 2.35

40 000 127 1.21 0.94 0.89 2.01 37.0 84.0 2.39

45 000 117 1.21 0.95 0.91 2.02 36.8 81.7 2.48

50 000 106 1.23 0.95 0.99 2.11 36.2 77.1 2.73

FIG. 3. The change of RG bias, correlation, and sample hours

with respect to theminimumnumber ofZdr–Z samples required for

a estimation.
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the estimated a value (0.0212dB per degree) was not

close to the one for intense rain (e.g., typically 0.0150dB

per degree for convective rain), although several con-

vective systems passed over the basin between 1400 and

1500 UTC. Therefore, the use of greater a yielded the

significant overestimation observed for this hour. We

confirmed this overestimation tendency from the hourly

RG values (i.e., 11.6 versus 6.6mm) at one of the rain

gauge locations on the path of intense rainfall systems.

The second reflectivity map at 1639 UTC shows that the

estimated a (0.0174dB per degree) is closer to the con-

vective one, which mitigated the degree of overestimation

for the intense rain area that is relatively smaller com-

pared to the case at 1413 UTC. We also confirmed that

there were some underestimations at the rain gauge lo-

cations indicated by yellow and green areas because the

a value used was smaller than the typical one for light rain

(e.g., 0.0350dB per degree for stratiform rain). However,

we found that the degree of underestimation tended to be

much smaller than that of overestimation, which often

TABLE 2. List of selected rain events during the period of 1 May–15 June 2013 and hourly RG evaluation results quantified by the

statistical metrics.

R(Z) R(A)

Event Event period (UTC)

Maximum

intensity (mmh21) B r

MAE

(mm)

RMSE

(mm) B r

MAE

(mm)

RMSE

(mm)

1 1000 UTC 19 May–0900 UTC 20 May 29.5 1.05 0.88 0.73 1.96 1.17 0.95 0.53 1.37

2 0100–0700 UTC 21 May 21.6 1.06 0.89 0.81 1.97 1.14 0.95 0.76 1.58

3 1200–1900 UTC 26 May 14.6 0.69 0.78 1.42 2.19 1.31 0.89 1.17 1.93

4 0900–1200 UTC 28 May 4.6 1.03 0.62 0.60 1.07 1.57 0.74 1.00 1.52

5 2000 UTC 29 May–0600 UTC 30 May 44.1 0.85 0.78 2.41 5.18 1.16 0.96 1.54 2.87

6 2200 UTC 30 May–0000 UTC 31 May 19.2 1.00 0.92 0.96 1.73 1.35 0.97 1.07 1.81

7 1200 UTC–4 Jun 0500 UTC 5 Jun 2.0 2.54 0.82 0.71 1.09 2.27 0.81 0.59 0.83

8 0800 UTC 5 Jun–0200 UTC 6 Jun 5.5 0.94 0.76 0.37 0.82 1.33 0.74 0.50 0.96

9 2100 UTC 8 Jun–0200 UTC 10 Jun 3.1 0.82 0.74 0.10 0.34 1.11 0.75 0.14 0.42

10 1000–1300 UTC 12 Jun 37.2 1.42 0.95 1.90 4.02 1.61 0.95 2.27 4.10

11 2100 UTC 12 Jun–0300 UTC 13 Jun 29.3 1.17 0.87 1.91 3.70 1.11 0.89 1.52 3.23

12 1000 UTC 19 May–0900 UTC 20 May 3.9 2.13 0.82 0.66 1.17 1.80 0.78 0.52 0.76

FIG. 4. Scatterplots of hourly RG comparisons for four intense rain cases in Table 2 to evaluate the improvements ofR(A) vsR(Z). The

statistical metrics provided in the figure are themultiplicative biasB, correlation coefficient r, MAE, and RMSE. The numbers of nonzero

RG pairs included in the comparisons are 131, 83, 135, and 84 for events 1, 3, 5, and 11, respectively.
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hides (or dominates) the underestimation tendency in

mesoscale convective systems (MCS) where the convec-

tive and stratiform systems exist together. This is some-

what consistent with the fact that the bias ratios of R(A)

shown in Tables 1 and 2 and Figs. 2 and 4 are all greater

than unity.

Figure 6 illustrates the same analysis as Fig. 5 for event

5.We selected this case because it illustrates the greatest

improvement of the R(A) estimator. The event is char-

acterized byMCS where a widespread stratiform system

follows a strong convective line as shown in the re-

flectivity maps of Fig. 6. The first reflectivity map at

2024 UTC 29 May demonstrates that there is no con-

tribution of stratiform rain in both the sampling range

and the basin area. Therefore, the estimated a value

(0.0146dB per degree) was close to that of a convective

a value, which led to a quite accurate rainfall estimation

(the bias ratio for this hourly window was about 1.0) for

the basin area.On the other hand, thea value (0.0190dB

per degree) for the secondmap at 0048UTC 30Maywas

greater than the a value at 2024 UTC 29 May due to the

contribution of a substantial portion of stratiform rain in

the sampling range. This caused similar overestimations

to the cases shown in Fig. 5 for the convective areas

within the basin in Fig. 6. The RG values between 0000

and 0100 UTC 30 May at two locations in the middle of

basin where convective systems passed were 12.4 versus

7.0 and 18.6 versus 8.4mm, respectively. We also in-

spected other events (e.g., events 8 and 10) in which

R(A) showed worse performance than R(Z) and

confirmed that the observed overestimations of R(A)

were caused by the use of uniform a as illustrated in

Figs. 5 and 6.

c. Longer-scale evaluation

The evaluation in this section focuses on the overall

performance of R(A) at longer time scales (e.g., yearly

rain totals from April to October) and its well-known

immunity to radar miscalibration and partial beam

blockage effects (e.g., Ryzhkov et al. 2014). We clarify

that the R(A) estimates presented in this section were

generated using a combination of R(A) for liquid pre-

cipitation and multiple R(Z)s for solid/mixed precipi-

tation. We used 3-yr data for the KDMX and KFSD

radars and the daily COOP rain gauges for the evalua-

tion. The coverage of the two radars and the spatial

distribution of the COOP gauges within each radar do-

main are shown in Fig. 1. As we stated that our current

R(Z) approach for KFSD has yielded significant un-

derestimations due to the PBB effect, we demonstrate

the capability of R(A) regarding PBB and some practi-

cal challenges through this evaluation.

FIG. 5. Temporal variation of estimated a and bias, two instantaneous base reflectivity maps within the hours of interest, and the

estimatedZdr slope and a at the two instances for event 3. The black circle in the reflectivity maps indicates theZdr–Z sampling range, and

the white solid line represents the boundary of the Turkey River basin where the rain gauges are located.
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We generated KDMX and KFSD radar estimates for

the years of 2015–17 using Eq. (9) for liquid precipita-

tion and Eq. (10) for solid and mixed precipitation. The

RG evaluation results for R(Z) and R(A) at rain total

scale accumulated for April through October are com-

pared in Fig. 7. In Fig. 7, the gray and orange dots denote

R(Z) and R(A) estimates, respectively. We recognize

from Fig. 7 that the utilization of R(A) results in the

mitigation of the opposite tendencies of overestimation

and underestimation exhibited by the R(Z) algorithm

both for the KDMX and KFSD radars. Moreover, the

scatters of R(A) are considerably reduced compared to

those ofR(Z), and the statistical metrics presented in the

scatterplots confirm better agreement of the R(A) esti-

mates with the ground reference data. Figure 8 shows

the same analysis as Fig. 7, but with a different repre-

sentation to expose range-dependent systematic ten-

dencies of both estimates. TheR(Z) for KDMX in Fig. 8

shows a typical signature of reflectivity-based estimates

affected by the radar miscalibration andML effects. The

shift of gray dots above unity (red solid line) within

100 km for KDMX indicates systematic overestimation

caused by radar miscalibration, and the bump observed

at the 100–150-km range exhibits the impact of the ML

(e.g., Krajewski et al. 2011). On the other hand, R(A)

estimates for both radars in Fig. 8 are much closer to and

better aligned along the unity line, indicating that the

effect of radar miscalibration observed in R(Z) is

almost eliminated. The statistical metrics provided in

Fig. 8 were calculated for the range within 100 km to

exclude the ML effect and attest to the superiority of

R(A) with respect toR(Z). It becomes clear from Fig. 8

that quite a few of R(A)’s overestimations (KDMX)

and underestimations (KFSD) shown in Fig. 7 were

from far ranges for both radars. This represents a

practical limitation of R(A) application because the

R(A) algorithm is valid only for pure rain for the re-

gion below the ML.

To examine KFSD’s PBB effect, we present the

rainfall accumulation maps for the entire month of

September 2016 in Fig. 9. In Fig. 9, we can detect clear

PBB effect in the two inset areas labeled (a) and (b) of

the R(Z) accumulation map, whereas the R(A) map

shows much alleviated PBB patterns for the two areas.

In the R(A) map of Fig. 9, the weak PBB effect still

appears at the range between 100 and 150 km in both

(a) and (b) areas. This can occur when theML is located

lower than an altitude corresponding to 150-km range,

or when the total span of fdp over a rain segment at this

range is smaller than 38 (e.g., light rain). We quantified

the PBB effect in Fig. 10 based on RG comparison for

the rain gauge locations in part of the Iowa domain

where the PBB effect is significant. The selected rain

gauges (black dots) for the PBB evaluation are shown in

Fig. 9. Figure 10 demonstrates that the significant un-

derestimations by PBB in R(Z) were improved in R(A),

FIG. 6. As in Fig. 5, but for event 5.
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and the R(A) estimates within 150 km seem to agree

with ground observations. The R(A) estimates over

150km show some consistency with the ones at similar

ranges in Fig. 8 because of the ML effect. We note that

the example case for September 2016 is a good instance

to demonstrate the immunity of R(A) to the PBB effect,

and many other months when light rain occurred fre-

quently might not show this improvement for PBB due

to the requirement of fdp change.

5. Summary and discussion

We examined the performance of the S-band pro-

totype specific attenuation algorithm (e.g., Wang et al.

2019) implemented in the IFC’s existing QPE frame-

work (e.g., Krajewski et al. 2017) with some practical

adaptations of the prototype algorithm. The study

aims to improve understanding of the new algorithm’s

strengths and weaknesses in its practical (e.g., opera-

tional) implementation motivated by real-time stream-

flow forecasting. There are several novel aspects of this

study compared to the earlier ones (e.g., Wang et al.

2019; Cocks et al. 2019; Zhang et al. 2020). These include

1) the evaluation of multiple a estimation equations;

2) using actual example cases to demonstrate how the

use of uniform a generates QPE errors with their tem-

poral aspects (i.e., from hour to hour); and 3) investi-

gating the impact of reduced number of Zdr–Z samples

(e.g., 3000 versus 30 000) on theQPE accuracy for future

improvement of a estimation.

We comparatively evaluated the performance ofR(A)

with that of our conventional estimation based on R(Z)

at multiple temporal scales. For a shorter-scale evalua-

tion, we used a high-density, high-quality rain gauge

network deployedwithin the TurkeyRiver basin in Iowa

(see Fig. 1) as ground reference. Using this hourly

dataset, we tested three a estimation equations offered

in Eqs. (6)–(8) and selected Eq. (6), a quadratic func-

tion of the estimated Zdr slope, as our estimation

method. We note that Eq. (8) represented as a function

of the Zdr slope and maximum reflectivity led to sys-

tematic QPE overestimations, although its RG agree-

ment and scatter (Fig. 2) look better than those of

R(Z). We also inspected the impact of Zdr–Z sample

FIG. 7. Three-year RG comparison for the KDMXandKFSD radars at rain total scale over the period of April–October each year. The

gray and orange dots denote R(Z) and R(A) estimates, respectively. The statistical metrics provided in the figure are the multiplicative

bias B, correlation coefficient r, and NMAE. The same color code was applied to the statistical metrics provided in each scatterplot.
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size on the a estimation and subsequent QPE accuracy

because it is often hard to ensure the huge number of

Zdr–Z samples (e.g., 30 000) recommended in Wang

et al. (2019) depending on the spatial coverage of

precipitation in the radar domain. The analysis re-

sults presented in Table 1 and Fig. 3 indicated that

the QPE accuracy does not seem to be sensitive to

the number of samples tested (ranging from 3000 to

50 000). Therefore, we selected 3000 as a requirement

for our R(A) algorithm to avoid the use of default

(fixed) a as much as possible.

Based on the determination of factors regarding

a estimation, we performed an hourly RG analysis for

the 12 selected rain events (Table 2) that occurred

during the period of 1 May–15 June 2013. The results

revealed significant accuracy improvements in the R(A)

estimates compared toR(Z) for intense rain cases, while

several light rain cases remain a challenge for bothR(A)

and R(Z). [Our R(A) algorithm applies R(Z) for light

rain cases where the total span of fdp along a radial di-

rection is smaller than 38.] Despite R(A)’s superiority in

comparison with R(Z), we found that R(A) consistently

leads to some degree of overestimation, for example,

about 10%–30% based on the cases presented in Fig. 4.

This overestimation was due to the heterogeneity of

precipitation systems between the sampling and eval-

uation regions for a estimation and application, re-

spectively. For instance, the use of a (.0.0150 dB per

degree) estimated from mixed precipitation systems

(convective 1 stratiform) in a whole radar coverage

domain tends to overestimate convective rain with

higher reflectivity in the evaluation area for which

a should be close to the typical convective value

(0.0150 dB per degree). Although we also observed the

opposite tendency (e.g., underestimation of rainfall in

the stratiform parts of radar echo), the degree of un-

derestimation was not as large as that of overestima-

tion in the mixed precipitation systems (e.g., MCS).

Our multiyear evaluation employed daily rain gauges

(COOP) extensively distributed over the Iowa domain,

which allowed us to investigate the range-dependent

bias pattern in the KDMX and KFSD radar estimates.

The results also confirm the advantages of R(A): R(A)

from both radars better agreed with ground observa-

tions without radar miscalibration and PBB effects, at

least within their 100-km range, whereas R(Z) showed

clear PBB and climatological ML effects as well as a

systematic shift. With regard to the range over 100 km,

the QPE accuracy of R(A) seems to decrease because

our R(A) algorithm selectively uses R(Z) provided in

Eq. (10) for solid andmixed precipitation (depending on

the ML location). This decrease is larger for KFSD

(Fig. 8) due to the use of R(Z) at this range and a more

pronounced PBB effect. However, the low accuracy at

this range could be improved by combining estimates

frommultiple radars with overlapping coverage areas in

the PBB region. Figure 11 demonstrates the potential

accuracy improvements by the composite R(A) product

using adjacent radars. We note the shift of under-

estimated values toward the unity line as a result of

FIG. 8. Range-dependent bias feature for the KDMX and KFSD radars. The color code is the same as in Fig. 7. The statistical metrics

provided in each scatterplot were calculated for the range within 100 km to exclude the ML effect.
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merging multiple radar data. The composite product in

Fig. 11 was generated for the IFC’s Iowa domain using

seven WSR-88D radars (see Krajewski et al. 2017).

The composite product analysis used rain gauges lo-

cated in each intersection area between the Iowa and

individual radar domains (see Fig. 1), which led to the

different numbers of dots for the KDMX and KFSD

analyses presented in Fig. 11. Since we have recently

implemented the R(A) algorithm in our real-time oper-

ation to generate a statewide QPE product, we will per-

form more a comprehensive evaluation and document

the results soon. The evaluation will include a compari-

son with the gauge-corrected product, the Multi-Radar

Multi-Sensor (MRMS) estimates (Zhang et al. 2016), al-

though our operation uses a radar-only product.

We note that the most crucial element in the R(A)

procedure is the factor a. As demonstrated in Figs. 5

and 6, the uncertainties in a affect QPE accuracy

significantly, arising from the use of uniform a over the

entire radar domain. Perhaps a simple, but effective way

to reduce this uncertainty might be to split rainfall re-

gions into two regimes (convective and stratiform) and

estimate a separately for each. This approach would be

feasible with a relatively smaller number of Zdr–Z

samples as revealed in our sensitivity analysis (Fig. 3). In

the near future, we hope to report the result of the

suggested approach in conjunction with our precipita-

tion classification scheme documented in Seo et al.

(2020). We also note that the requirement of the fdp

change (e.g., .38) is a challenge for R(A) application in

light rain cases, as the performance of otherDPmethods

(e.g., Cifelli et al. 2011; Chen and Chandrasekar 2015)

demonstrated for those cases.

The R(A) implementation in the IFC operation and

its evaluation were motivated by improved streamflow

FIG. 10. RG comparison (September 2016) for the PBB area in

the KFSD domain. The assessment locations are indicated as black

dots in Fig. 9.

FIG. 9. Rainfall accumulation maps generated using R(Z) and

R(A) algorithms for the entiremonth of September 2016. Two inset

areas (a) and (b) indicate the regions where the PBB effects are

prominent in R(Z). The range rings in the maps demarcate every

50 km from the radar site. The black dots represent the rain gauge

locations used for the quantitative evaluation of PBB effect

in Fig. 10.
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forecasting for Iowa. A comprehensive hydrologic

evaluation should include a wide range of basin scales

because the errors in QPE may propagate differently

at different basin scales. This requires more extensive

data processing (e.g., generation of a composite prod-

uct) for a larger spatial domain than the ones used in

this study (e.g., individual radars) and wide-ranging

streamflow simulations and analyses. Therefore, we do

not include those efforts in our current work but plan

to conduct a large-scale hydrologic evaluation by in-

specting complicated aspects associated with the spatial

and temporal structure of the QPE error at numerous

basin scales. We also hope to report the evaluation

results soon.
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